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Generalities

I Here’s one way to do model theory: come up with a combinatorial
restriction on definability in a theory, and ask what
structural/non-structural consequences it has.

I Some paradigms:

I Binarity: Ask that the theory eliminate quantifiers in a
relational language in which every symbol has arity at most 2.

I Classification-theoretic dividing lines: Ask that the theory
omit a certain pattern of consistency and/or inconsistency for
partitioned formulas.

I Indiscernible collapse: Ask that every generalized
indiscernible of some kind is automatically a generalized
indiscernible of some other kind.



Binarity

I A theory T is called binary if, whenever given tuples
a = (a0, . . . , an−1) and b = (b0, . . . , bn−1), we have a ≡ b if and
only if, for all i < j , aiaj ≡ bibj .

I When T is homogeneous (ℵ0-categorical and eliminates quantifiers
in a finite relational language), this is equivalent to having only
unary and binary relation symbols in the language.

I Examples: DLO, the Fräıssé limit of finite equivalence relations,
the random graph

I Non-examples: Dense ∧-trees, random 3-hypergraph.



Binarity

I Question: What are the binary homogeneous structures?

I Since the mid-70s, complete classifications have been given for
several classes of binary homogeneous structures:

I Partial orders (Schmerl)
I Graphs (Lachlan-Woodrow)
I Directed graphs (Cherlin)
I Tournaments (Lachlan)
I Colored multi-partite graphs (Lockett, Truss)
I . . .



Classification-theoretic dividing lines



Generalized indiscernibles

I Suppose I is an L′-structure and (ai )i∈I is a collection of tuples in
the monster M. We say (ai )i∈I is an I -indexed indiscernible if, given
any tuples η = (η0, . . . , ηn−1) and ν = (ν0, . . . , νn−1) from I , we
have

qftpL′(η) = qftpL′(ν) =⇒ (aη0 , . . . , aηn−1) ≡ (aν0 , . . . , aνn−1).

I Examples:

I If I = (I , <) is an infinite linear order, then I -indexed
indiscernibles are just indiscernible sequences.

I If I is an infinite set in the language of equality, then I -indexed
indiscernibles are indiscernible sets.



Indiscernible collapse

I Stability: A theory T is stable if and only if every indiscernible
sequence is an indiscernible set (Shelah)

I NIP: A theory T is NIP if and only if every random ordered graph
indiscernible is an indiscernible sequence (Scow)

I n-dependence: A theory T is n-dependent if and only if every
random ordered (n + 1)-ary hypergraph indiscernible is an
indiscernible sequence (Chernikov-Palaćın-Takeuchi)



Binarity and Classification Theory

I From a model-theoretic point of view, it is more natural to ask how
binarity interacts with classification-theoretic dividing lines.

I For stable structures this was done in the 80s (Lachlan-Shelah,
Lachlan), giving a classification* of all stable homogeneous
structures.

I For simple structures, classification results have been considered
much more recently (Aranda-Lopez, Koponen), leading to a
satisfying classification*.



Treetop indiscernibles

I Let L0,P = {E,∧, <lex ,P} and consider ω≤ω as an L0,P with the
following interpretations:

I E = tree partial order
I <lex = lexicographic order
I ∧ = binary meet function
I P = ωω, the leaves of the tree.

I We say an ω≤ω-indexed indiscernible (with ω≤ω considered as an
L0,P -structure (aη)η∈ω≤ω is a treetop indiscernible.

I This extends naturally to (aη)η∈T for any L0,P -structure T with
Age(T ) = Age(ω≤ω).



Treetop indiscernibles



Treeless theories

Definition
A theory T is called treeless if, whenever (aη)η∈T is a treetop
indiscernible, (aη)η∈P(T ) is an indiscernible sequence (with P(T ) viewed
as a dense linear order under <lex).



Treeless theories

I A theory T is called treeless if, whenever (aη)η∈T is a treetop
indiscernible, (aη)η∈P(T ) is an indiscernible sequence (with P(T )
viewed as a dense linear order under <lex).

I Binary theories are treeless.

I Stable theories are treeless.

I If T ′ is interpretable in a treeless T , then T ′ is treeless.



Generic Stability

I We say that a partial type p is Ind-definable over A if for every
ϕ(x ; y), the set {b : ϕ(x ; b) ∈ π} is Ind-definable over A (i.e., is a
union of A-definable sets).

I Suppose π is a global partial type. We say π is generically stable
over A if π is Ind-definable over A if: given any ϕ(x ; b) ∈ π and
sequence (ai )i<ω with ak |= π|Aa<k

for all k , we have

|= ϕ(ak , b)

for all but finitely many k .



Generic stability

I If π(x) and λ(x) are global partial types, generically stable over A,
then if π(x)|A ∪ λ(x)|A is consistent then π(x) ∪ λ(x) is consistent.
Hence every p ∈ S(A) extends to a maximal global generically
stable partial type.

I Gives a notion of independence: a |̂ π
A
b if b |= π|Aa for π the

maximal generically stable extension of tp(b/A).



Generic stability

Theorem
If T is treeless then |̂ π is symmetric and satisfies base
monotonicity—that is,

a
π

|̂
A

bc =⇒ a
π

|̂
Ab

c .

We will see that this has consequences for classification-theoretic dividing
lines.



NSOP1

I Recently, the class of NSOP1 theories, which properly contains the
simple theories, has been intensively studied. There is a structure
theory for NSOP1 theories completely parallel to that for simple
theories, with the notion of Kim-independence playing the role that
forking-independence plays for simple theories.

I There are lots of interesting examples:

I Combinatorics: Generic structures (Kruckman-R.), generic
projective planes (Conant-Kruckman), Steiner triple systems
(Barbina-Casanovas), classical geometries over algebraically
closed or pseudo-finite fields (Chernikov-R.)

I Algebra: PAC fields with free Galois group (Kaplan-R.),
Frobenius fields (Kaplan-R.), existentially closed G -fields for G
virtually free* (Beyarslan-Kowalski-R.), Abelian varieties with a
generic subgroup (d’Elbee), existentially closed exponential
fields (Haykazyan-Kirby), Hilbert spaces with generic subset
(Berenstein-Hyttinen-Villaveces)

I Question: What do binary homogeneous NSOP1 structures look
like?



T ∗feq

I The canonical example of a NSOP1 non-simple homogeneous
structure is T ∗feq, the generic theory of parameterized equivalence
relations.

I More precisely, we let Lfeq be the language with two sorts O (for
‘objects’) and P (for ‘parameters’), as well as a ternary relation
Ex(y , z) ⊆ P × O2. The class Kfeq is the class of finite
Lfeq-structures A where, for all p ∈ P(A), Ep is an equivalence
relation on O(A) is a Fráıssé class. T ∗feq is the theory of the Fráıssé
limit.



T ∗feq

I The canonical example of a NSOP1 non-simple homogeneous
structure is T ∗feq, the generic theory of parameterized equivalence
relations.

I More precisely, we let Lfeq be the language with two sorts O (for
‘objects’) and P (for ‘parameters’), as well as a ternary relation
Ex(y , z) ⊆ P × O2. The class Kfeq is the class of finite
Lfeq-structures A where, for all p ∈ P(A), Ep is an equivalence
relation on O(A) is a Fráıssé class. T ∗feq is the theory of the Fráıssé
limit.

I More generally, if M is a homogeneous NSOP1 structure, one can
form its ‘parameterized version’ which will again be homogeneous
NSOP1 (Chernikov-R.)

I T ∗feq (and the non-simple NSOP1 parametrized structures) are all
(at least) ternary. Is there a binary NSOP1 homogeneous structure?



Theorem

Theorem
If T is treeless and NSOP1 then T is simple.



The Proof

I If T is NSOP1, then |̂ K = |̂ π over models (Kim’s lemma for

|̂ K ).

I A theory is simple if and only if |̂ K satisfies base monotonicity,

that is, if M ≺ N |= T and a |̂ K

M
Nb then a |̂ K

N
b (Kaplan-R).

I Treelessness implies base monotonicity.



NSOPn

I T has SOP2 (=TP1) if there is some formula ϕ(x ; y) and a tree of
tuples (aη)η∈ω<ω such that:

I (Paths are consistent) For all η ∈ ωω, {ϕ(x ; aη|k) : k < ω} is
consistent.

I (Incomparables are inconsistent) For all η ⊥ ν ∈ ω<ω,
{ϕ(x ; aη), ϕ(x ; aν)} is inconsistent.

I T has SOPn for n ≥ 3 if there is some formula ϕ(x ; y) and some
indiscernible sequence (ai )i<ω such that:

I |= ϕ(ai , aj) if and only if i < j .
I {ϕ(x0, x1), ϕ(x1, x2), . . . , ϕ(xn−2, xn−1), ϕ(xn−1, x0)} is

inconsistent.

I For any n, T is said to be NSOPn if it does not have SOPn.



The Map



Picture of SOP2



Picture of SOP2



NSOPn

I We have the following implications:

NSOP1 =⇒ NSOP2 =⇒ NSOPn =⇒ NSOPn+1

for all n ≥ 3.

I For each n ≥ 3, there are (binary homogeneous) structures which
are SOPn and NSOPn+1.

I It is was open, in general, if NSOP1, NSOP2, and NSOP3 are
distinct.

I Question: What about when restricted to binary theories?



Theorem

Theorem
A treeless NSOP3 theory with trivial indiscernibility is NSOP2.

Definition
T is said to have trivial indiscernibility if whenever I is a-indiscernible and
b-indiscernible, it is ab-indiscernible. It holds, e.g., in binary theories.



The proof

I The proof uses the following characterization of SOP3: T has SOP3

if and only if there is a formula ϕ(x ; y) and a collection of tuples
(aI )I∈I , where I = {[a, b] ⊆ R : 0 ≤ a < b ≤ 1} such that, for all
J ⊆ I,

{ϕ(x ; aI ) : I ∈ J} is consistent ⇐⇒
⋂

J 6= ∅.



SOP3



The proof

I The proof uses the following characterization of SOP3: T has SOP3

if and only if there is a formula ϕ(x ; y) and a collection of tuples
(aI )I∈I , where I = {[a, b] ⊆ R : 0 ≤ a < b ≤ 1} such that, for all
J ⊆ I,

{ϕ(x ; aI ) : I ∈ J} is consistent ⇐⇒
⋂

J 6= ∅.

I We also choose a witness (aη)η∈ω<ω to SOP2 such that (aη)η∈ω≤ω

forms a treetop indiscernible where each leaf realizes the path-type
below it.



Treetop witness



Finding witnesses



Finding witnesses



Finding witnesses



The proof

I The proof uses the following characterization of SOP3: T has SOP3

if and only if there is a formula ϕ(x ; y) and a collection of tuples
(aI )I∈I , where I = {[a, b] ⊆ R : 0 ≤ a < b ≤ 1} such that, for all
J ⊆ I,

{ϕ(x ; aI ) : I ∈ J} is consistent ⇐⇒
⋂

J 6= ∅.

I We also choose a witness (aη)η∈ω<ω to SOP2 such that (aη)η∈ω≤ω

forms a treetop indiscernible where each leaf realizes the path-type
below it.

I Treelessness lets us find parameters that detect whether or not
intervals overlap or are disjoint. Trivial indiscernibility allows us to
do this for several intervals at once, obtaining SOP3 by
compactness.



Conclusion

I A corollary: Every binary NSOP3 theory is NSOP2 = NTP1. Every
NSOP1 binary theory is simple.

I Modulo Mutchnik’s Theorem (on arXiv today), this would mean
every NSOP3 binary theory is simple.



Thanks!


