Binarity, Treelessness, and Generic Stability

Nicholas Ramsey UCLA

Cetraro Meeting June 24, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This is joint work with Itay Kaplan and Pierre Simon

・ロト・日本・ヨト・ヨー うへの

Generalities

Here's one way to do model theory: come up with a combinatorial restriction on definability in a theory, and ask what structural/non-structural consequences it has.

Some paradigms:

- Binarity: Ask that the theory eliminate quantifiers in a relational language in which every symbol has arity at most 2.
- Classification-theoretic dividing lines: Ask that the theory omit a certain pattern of consistency and/or inconsistency for partitioned formulas.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Indiscernible collapse: Ask that every generalized indiscernible of some kind is automatically a generalized indiscernible of some other kind.

Binarity

- A theory *T* is called *binary* if, whenever given tuples a = (a₀,..., a_{n-1}) and b = (b₀,..., b_{n-1}), we have a ≡ b if and only if, for all i < j, a_ia_j ≡ b_ib_j.
- When T is homogeneous (ℵ₀-categorical and eliminates quantifiers in a finite relational language), this is equivalent to having only unary and binary relation symbols in the language.
- Examples: DLO, the Fraïssé limit of finite equivalence relations, the random graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ **Non-examples**: Dense ∧-trees, random 3-hypergraph.

Binarity

- Question: What are the binary homogeneous structures?
- Since the mid-70s, complete classifications have been given for several classes of binary homogeneous structures:

- Partial orders (Schmerl)
- Graphs (Lachlan-Woodrow)
- Directed graphs (Cherlin)
- Tournaments (Lachlan)
- Colored multi-partite graphs (Lockett, Truss)
- ▶ ...

Classification-theoretic dividing lines

Questions? Suggestions? Corrections? email me: gconant@nd.edu

References Update Log

Generalized indiscernibles

$$\operatorname{qftp}_{L'}(\overline{\eta}) = \operatorname{qftp}_{L'}(\overline{\nu}) \implies (a_{\eta_0}, \ldots, a_{\eta_{n-1}}) \equiv (a_{\nu_0}, \ldots, a_{\nu_{n-1}}).$$

Examples:

- If I = (I, <) is an infinite linear order, then I-indexed indiscernibles are just indiscernible sequences.
- If I is an infinite set in the language of equality, then I-indexed indiscernibles are indiscernible sets.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Indiscernible collapse

- Stability: A theory T is stable if and only if every indiscernible sequence is an indiscernible set (Shelah)
- ▶ **NIP**: A theory *T* is NIP if and only if every random ordered graph indiscernible is an indiscernible sequence (Scow)
- n-dependence: A theory T is n-dependent if and only if every random ordered (n + 1)-ary hypergraph indiscernible is an indiscernible sequence (Chernikov-Palacín-Takeuchi)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Binarity and Classification Theory

- From a model-theoretic point of view, it is more natural to ask how binarity interacts with classification-theoretic dividing lines.
- For stable structures this was done in the 80s (Lachlan-Shelah, Lachlan), giving a classification* of all stable homogeneous structures.
- For simple structures, classification results have been considered much more recently (Aranda-Lopez, Koponen), leading to a satisfying classification*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Treetop indiscernibles

Let L_{0,P} = {≤, ∧, <_{lex}, P} and consider ω^{≤ω} as an L_{0,P} with the following interpretations:

- $\blacktriangleright \trianglelefteq = tree partial order$
- <_{lex} = lexicographic order
- \blacktriangleright \land = binary meet function
- $P = \omega^{\omega}$, the leaves of the tree.
- ▶ We say an $\omega^{\leq \omega}$ -indexed indiscernible (with $\omega^{\leq \omega}$ considered as an $L_{0,P}$ -structure $(a_\eta)_{\eta \in \omega^{\leq \omega}}$ is a *treetop indiscernible*.
- This extends naturally to (a_η)_{η∈T} for any L_{0,P}-structure T with Age(T) = Age(ω^{≤ω}).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Treetop indiscernibles

Treeless theories

Definition

A theory T is called *treeless* if, whenever $(a_{\eta})_{\eta \in T}$ is a treetop indiscernible, $(a_{\eta})_{\eta \in P(T)}$ is an indiscernible sequence (with P(T) viewed as a dense linear order under $<_{lex}$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Treeless theories

A theory *T* is called *treeless* if, whenever (a_η)_{η∈T} is a treetop indiscernible, (a_η)_{η∈P(T)} is an indiscernible sequence (with P(T) viewed as a dense linear order under <_{lex}).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Binary theories are treeless.
- Stable theories are treeless.
- If T' is interpretable in a treeless T, then T' is treeless.

Generic Stability

- We say that a partial type p is Ind-definable over A if for every φ(x; y), the set {b : φ(x; b) ∈ π} is Ind-definable over A (i.e., is a union of A-definable sets).
- Suppose π is a global partial type. We say π is generically stable over A if π is Ind-definable over A if: given any φ(x; b) ∈ π and sequence (a_i)_{i<ω} with a_k ⊨ π|_{Aa<k} for all k, we have

$$\models \varphi(\mathbf{a}_k, \mathbf{b})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

for all but finitely many k.

Generic stability

If π(x) and λ(x) are global partial types, generically stable over A, then if π(x)|_A ∪ λ(x)|_A is consistent then π(x) ∪ λ(x) is consistent. Hence every p ∈ S(A) extends to a maximal global generically stable partial type.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Gives a notion of independence: a ⊥^π_A b if b ⊨ π|_{Aa} for π the maximal generically stable extension of tp(b/A).

Generic stability

Theorem If T is treeless then $\int_{-\pi}^{\pi}$ is symmetric and satisfies base monotonicity—that is,

$$a \stackrel{\pi}{\underset{A}{\cup}} bc \implies a \stackrel{\pi}{\underset{Ab}{\cup}} c.$$

We will see that this has consequences for classification-theoretic dividing lines.

NSOP₁

- Recently, the class of NSOP₁ theories, which properly contains the simple theories, has been intensively studied. There is a structure theory for NSOP₁ theories completely parallel to that for simple theories, with the notion of Kim-independence playing the role that forking-independence plays for simple theories.
- There are lots of interesting examples:
 - **Combinatorics**: Generic structures (Kruckman-R.), generic projective planes (Conant-Kruckman), Steiner triple systems (Barbina-Casanovas), classical geometries over algebraically closed or pseudo-finite fields (Chernikov-R.)
 - Algebra: PAC fields with free Galois group (Kaplan-R.), Frobenius fields (Kaplan-R.), existentially closed G-fields for Gvirtually free* (Beyarslan-Kowalski-R.), Abelian varieties with a generic subgroup (d'Elbee), existentially closed exponential fields (Haykazyan-Kirby), Hilbert spaces with generic subset (Berenstein-Hyttinen-Villaveces)
- **Question**: What do binary homogeneous NSOP₁ structures look like?

 T_{feq}^*

- The canonical example of a NSOP₁ non-simple homogeneous structure is T^{*}_{feq}, the generic theory of parameterized equivalence relations.
- ▶ More precisely, we let L_{feq} be the language with two sorts O (for 'objects') and P (for 'parameters'), as well as a ternary relation $E_x(y, z) \subseteq P \times O^2$. The class \mathbb{K}_{feq} is the class of finite L_{feq} -structures A where, for all $p \in P(A)$, E_p is an equivalence relation on O(A) is a Fraíssé class. T_{feq}^* is the theory of the Fraíssé limit.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

T_{feq}^*

- The canonical example of a NSOP₁ non-simple homogeneous structure is T^{*}_{feq}, the generic theory of parameterized equivalence relations.
- ▶ More precisely, we let L_{feq} be the language with two sorts O (for 'objects') and P (for 'parameters'), as well as a ternary relation $E_x(y, z) \subseteq P \times O^2$. The class \mathbb{K}_{feq} is the class of finite L_{feq} -structures A where, for all $p \in P(A)$, E_p is an equivalence relation on O(A) is a Fraíssé class. T_{feq}^* is the theory of the Fraíssé limit.
- More generally, if *M* is a homogeneous NSOP₁ structure, one can form its 'parameterized version' which will again be homogeneous NSOP₁ (Chernikov-R.)
- T^{*}_{feq} (and the non-simple NSOP₁ parametrized structures) are all (at least) *ternary*. Is there a binary NSOP₁ homogeneous structure?

Theorem

Theorem If T is treeless and $NSOP_1$ then T is simple.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Proof

- If T is NSOP₁, then $\bot^{\kappa} = \bot^{\pi}$ over models (Kim's lemma for \downarrow^{κ}).
- ▶ A theory is simple if and only if \bigcup_{M}^{K} satisfies base monotonicity, that is, if $M \prec N \models T$ and $a \bigcup_{M}^{K} Nb$ then $a \bigcup_{N}^{K} b$ (Kaplan-R).

Treelessness implies base monotonicity.

NSOP_n

- T has SOP₂ (=TP₁) if there is some formula φ(x; y) and a tree of tuples (a_η)_{η∈ω^{<ω}} such that:
 - Paths are consistent) For all η ∈ ω^ω, {φ(x; a_{η|k}) : k < ω} is consistent.</p>
 - (Incomparables are inconsistent) For all η ⊥ ν ∈ ω^{<ω}, {φ(x; a_η), φ(x; a_ν)} is inconsistent.
- T has SOP_n for n ≥ 3 if there is some formula φ(x; y) and some indiscernible sequence (a_i)_{i<ω} such that:
 - $\models \varphi(a_i, a_j)$ if and only if i < j.
 - { $\varphi(x_0, x_1), \varphi(x_1, x_2), \dots, \varphi(x_{n-2}, x_{n-1}), \varphi(x_{n-1}, x_0)$ } is inconsistent.
- For any n, T is said to be NSOP_n if it does not have SOP_n.

The Map

forkinganddividing NTP₂ NIP distal o-minimal beta quadrant delta quadrant dp-minima strongly minimal NTP₁ NSOPn+1 VSOP1 VSOP3 VSOP₄ VFSOP VSOP w-stable gamma alpha quadrant • quadrant superstable supersimple stable simple

Questions? Suggestions? Corrections? email me: gconant@nd.edu

References Update Log

Picture of SOP₂

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Picture of SOP₂

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

NSOP_n

We have the following implications:

$$NSOP_1 \implies NSOP_2 \implies NSOP_n \implies NSOP_{n+1}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

for all $n \geq 3$.

- For each n ≥ 3, there are (binary homogeneous) structures which are SOP_n and NSOP_{n+1}.
- It is was open, in general, if NSOP₁, NSOP₂, and NSOP₃ are distinct.
- Question: What about when restricted to binary theories?

Theorem

Theorem

A treeless NSOP₃ theory with trivial indiscernibility is NSOP₂.

Definition

T is said to have *trivial indiscernibility* if whenever I is *a*-indiscernible and *b*-indiscernible, it is *ab*-indiscernible. It holds, e.g., in binary theories.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The proof

▶ The proof uses the following characterization of SOP₃: *T* has SOP₃ if and only if there is a formula $\varphi(x; y)$ and a collection of tuples $(a_l)_{l \in \mathcal{I}}$, where $\mathcal{I} = \{[a, b] \subseteq \mathbb{R} : 0 \le a < b \le 1\}$ such that, for all $J \subseteq \mathcal{I}$,

$$\{\varphi(x; a_I) : I \in J\}$$
 is consistent $\iff \bigcap J \neq \emptyset.$

 SOP_3

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The proof

The proof uses the following characterization of SOP₃: *T* has SOP₃ if and only if there is a formula φ(x; y) and a collection of tuples (a_l)_{l∈I}, where I = {[a, b] ⊆ ℝ : 0 ≤ a < b ≤ 1} such that, for all J ⊆ I,</p>

$$\{\varphi(x; a_I) : I \in J\}$$
 is consistent $\iff \bigcap J \neq \emptyset$.

We also choose a witness (a_η)_{η∈ω^{<ω}} to SOP₂ such that (a_η)_{η∈ω^{≤ω}} forms a treetop indiscernible where each leaf realizes the path-type below it.

Treetop witness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Finding witnesses

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Finding witnesses

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Finding witnesses

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The proof

The proof uses the following characterization of SOP₃: *T* has SOP₃ if and only if there is a formula φ(x; y) and a collection of tuples (a₁)_{1∈I}, where I = {[a, b] ⊆ ℝ : 0 ≤ a < b ≤ 1} such that, for all J ⊆ I,</p>

$$\{ \varphi(x; a_I) : I \in J \}$$
 is consistent $\iff \bigcap J \neq \emptyset.$

- We also choose a witness (a_η)_{η∈ω^{<ω}} to SOP₂ such that (a_η)_{η∈ω^{≤ω}} forms a treetop indiscernible where each leaf realizes the path-type below it.
- Treelessness lets us find parameters that detect whether or not intervals overlap or are disjoint. Trivial indiscernibility allows us to do this for several intervals at once, obtaining SOP₃ by compactness.

Conclusion

A corollary: Every binary NSOP₃ theory is NSOP₂ = NTP₁. Every NSOP₁ binary theory is simple.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modulo Mutchnik's Theorem (on arXiv today), this would mean every NSOP₃ binary theory is simple.

Thanks!

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの